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Abstract. We show thatR-matrices of all simple quantum groups have properties which permit
one to present quantum group twists as transitions to other coordinate frames on quantum
spaces. This implies physical equivalence of field theories invariant with respgegroups
(considered ag-deformed spacetime groups of transformations) connected with each other
by twists. Taking into account this freedom, we study quantum spaces of the special type,
with commuting coordinates but with-deformed differential calculus, and constrdeL, (N)
invariant multidimensional Jackson derivatives. We consider a particle and field theory on a two-
dimensionaly-space of this kind and come to the conclusion that only one (timelike) coordinate
is proved to be discretized.

1. Introduction

Lattice regularization has many advantages and plays an important role in quantum field
theory (see e.g. [1]). Unfortunately, it also has some shortcomings. Perhaps the most
essential one is spacetime symmetry breaking. The general reason for the latter is connected
with the introduction of a lattice in the theotlyy handsand therefore with its too rigid
nature. Among other reasons, this fact has initiated many attempts to construct discrete
(‘quantized’) spacetime manifolds on a deeper background (for previous attempts see e.g.
[2], ch VII and references therein). In recent years this problem has made a revival and
received considerable interest [3-5] due to the appearance of quantum groups (see e.g. [6]
and references therein).

Quantum spaces which appear in the frame of quantum group theory [7] have many
unusual properties, in particulagrdeformed differential calculi [8] and, in general, non-
commuting coordinates. In one-dimensional space;derivative can be represented by
a Jackson difference operator [9,10]. This, in turn, provides a description of a quantum
mechanical particle on a one-dimensional lattice [11]. Thysdeformation of differential
calculus apparently leads to space discretization. The relation of the non-commutativity
of coordinates to space discretization is not so straightforward and causes problems in the
construction of field theories og-spaces. Indeed, it means that operators of coordinates
cannot be diagonalized simultaneously and do not have common eigenvalues. On the other
hand, asymptotic (free) states of a particle scattering process are well described by the
usual non-deformed Minkowski geometry and Poigcaroup representations. Usually,
it is assumed that the-group nature of the spacetime reveals itself at extremely small
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2738 A P Demichev

distances and high energies. Therefore there exists a problem in this approach of how to
connect the the low-energy description of particles based on a commutative geometry and
the description of particles at high energy (small distances), feeling-theformation of

the spacetime.

To clarify this point, recall how the analogous situation looks in the superstring theory
[12]. Low-energy particles correspond to string zero modes. If one considers their scattering,
specific for string theory, heavy modes come into play as intermediate states only, essentially
improving the ultraviolet behaviour of the amplitudes but giving a negligible contribution to
their finite parts. Therefore the existence of superstrings does not contradict the low-energy
phenomenology based on ordinary quantum field theory.

A natural preliminary step towards understanding the relation between low-energy
phenomenology and physics ingadeformed spacetime can be the reduction of a number
of non-commuting coordinates, retainiggdeformed differential calculus angsymmetry.

This work is devoted to the study of such a possibility.

As is well known, quantum spaces, related to each other by twists [13,14] of
corresponding-groups, have different commutation relations for different coordinates [15].
The key idea of our approach is to present a group twist as a kigddeformed transition
to other frames. As was shown in [16],adeformed Minkowski spacetime with non-
commuting coordinates, which corresponds to a pure twisted Péimggaup (i.e. to the-
group obtained from the classical one by a twist), can be constructed from a usual Minkowski
space with the help of an appropriate coordinate transformatiory ageheralization of 4-
beins.

In the present paper we generalize this partial result to the twists of all non-trivially
deformed simple groups. More precisely, we will show that knoRsmatrices for all
simple g-groups have a property which permits one to describe the twist procedure as a
transformation ofj-space coordinates.

It seems natural to require that any reasonable theory must be physically equivalent in
different coordinate frames, so one can choose the most suitable frame, in particular the one
with the most simple commutation relations.

To construct lattice-like regularization one definitely needs multidimensional finite
differential calculus. Using the above-mentioned freedom in the choice of diffgrsphces
we considerGL,(N)-invariant g-spaces with commuting coordinates agelleformed
differential calculus, and construct a multidimensional analogue of the Jackson calculus
(invariant with respect to the appropriate quantum group).

Using the explicit formulae for a two-dimensional space, we consider a quantum
mechanical particle and the simplest field theory, and show that the latter is equivalent to a
system on a cylinder with a time coordinate taking values on an equidistant lattice along a
cylinder. Surprisingly, the second coordinate (a spacelike coordinate on a circle) proved to
be continuous. This fact has its origin in the properties of involution of the corresponding
guantum general linear group which lead to construction of quantum mechanical states in a
mixed coordinate—momentum representation, so that ‘the second discreteness’ corresponds
to integer numbers which label Fourier modes on the circles.

2. Geometry of quantum group twists

As is shown in [13,14], multiparametric quantum groups can be obtained from a one-
parametricg-group via so-called twists of a quasi-triangular Hopf algehraith the help

of an elementF = > f' ® f; € A ® A, which satisfies certain relations, so that the new
coproductA® and the new universat-matrix R are connected with the initial objects
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A andR through the relations
AP = FAF R = FIRF

Consider at first the case of tlgedeformations ofGL(N) groups. In this case a twist
of the R-matrix in the fundamental representatiBns described with the help of a diagonal
matrix F = diag( fi1, fiz, - - ., fun) With fi; f;; = 1 so that theR-matrix R") of the twisted
groupGL,;,(N) has the form

RP) = F7'RF7L,
Here R is (in general, also multiparametric) &matrix of the initial groupGL, , (N) and
Gij = 4ij - 1)

Coordinates of the initial quantum spa€§’[x"] satisfy the commutation relations (CRSs)
[7,15,17]

xix/ = qijxjxi (2)
and coordinates of the twisted spacg”"[x'] have the CRs

¥¥ =g xR 3
Now we introduce the algebra)'[¢’, ¢;] with the generatorge’, g;}/L; which commute
with the coordinates and put

F=elx (no summation) (4)

The elementg’ play the role of components of gdeformed (diagonal)-bein. The CRs
for them follows from (1)—(4),

eel = i?e-iei (5)
andg; are inverse elements
gie' =1. (6)
The coordinates’ are transformed by a-matrix 7'
. N ~. .
Fi=> T (7)
j=1

Then using (4) and (6) one obtains from (7) transformations of the coordinates

N
x’i=Zgi®7~"ij®e'7®xj. (8)
j=1
We have used in (8) a cross product sign to stress that the elements from the different
sets commute with each other (the elemegtsn (8) must be considered as the inverse
elements to the generatarsof another copy of an algebrﬂfl" with respect to the elements

¢' entering the same formula). Relation (8) means that the coordinatas transformed
by the matrixT with the entries

T =¢®T,®c (no summation) (9)
Using (6) one can express the matfixthrough7':

Th=ed T, ®g (no summation) (10)
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One can check straightforwardly thet defined by (8) satisfy the correct CRs

Yyl = Q[jX,JX”-

The general reason for this is the following property R¥matrices: if ag-matrix T
satisfies a TT-relation defined by the correspondmatrix, then thel -matrix defined by
(9) or (10) satisfies the relation with twistétimatrix R,

To prove this statement let us write the TT-relation (CRs for entries of a mAjrix
explicit form,

SORMTLT, = Y TITIR',
PSS S, r

and substitutérij by their expressions (9) in terms 671‘].. This gives the relation for the
latter:

Z Rmpy‘sgpgse”e”f"fj“u = Z T"T"g,gme'e" R™,. (11)
p,s s,r

Note that in this relation the elemengs must be considered as inverse elements of the
generatorg’ of another copy of an algebrﬂé\’ and so they commute with the elemeats
entering the same relation.

The multiparametrick-matrix for GL, ,,(N) group has the form

R™ = B™\ 4 N" (12)
where B is the diagonal matrix
Bm;; — ampans (Smn + ®nmqy;’3. + ®mnqnmr—l) (13)

with @ =1 if m > n, ®" = 0 if m < n, and the matrixV is the off-diagonal part of
the R-matrix,

N™ = §m8", 0™ (L—r ). (14)
Using this expressions one easily obtains

B ¢p8 = gn&nB"r = fri8ngmB e = gngmBEH)"" (15)

N" 88 = 8n&mN"} (16)

so that

Rmpnsgpgseuev — gngmeuevR(gzmn
whereR® and B are the twisted matrices of the same form (12)—(14) but for the twisted
parameterg;; = q,-jfl?. Analogous consideration of the right-hand side of (11) shows that
this relation can be rewritten in the form

SOROMINT, = Y TR, (7)

DS s,r

Thus, twistedg-matrices can be constructed with the helpgedleformedN-beins (5),

(6) and formula (9), which is a direct generalizatigrideformation) of a relation between
matrices of transformations in different coordinate frames.

In the case of the-deformation of simple groups of the seriBg, Cy and Dy there
is one more structure, namely an invariant length [7]

L, = E x'Cijx) = E Lix" x!
ij i
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wherei’ = N +1—i. Values of the coefficients can be found in [7] and are not essential
for our consideration. To preserve,, components of g-bein must satisfy the additional
constraints

de = =1 (18)

i=1...,N/2 for theCy and Dy series;i = 1,...,(N + 1)/2 for the By series. In
particular, for the serie8y

eWN+D/2 _ 1 (29)

These constraints reduce the number of twist parameters, which, from a geometrical point
of view, define CRs for the components of thebeins, so that the number is equal to

k(k —1)/2, wherek is rank of a group.R-matrices for theBy, Cy and Dy series have the

form

RY, =1[678%,(r8 (1= 8"") + (O rg;t + O gyir (1 — 6")) + (r — r 718,87, 0]
1. . . - .
+|:r31k8115]z 1L-58"y - — r_l)r(p‘_pj)EiEJ'(Slj S

i J (N+1)/2o(N+1)/2
+8' win 28 w2 k8 ]

(the last term exists for th&, series only). Hereo; ande¢; are integer or half-integer
numbers [7, 18]. Using this explicit form one can easily show thatRhmatrices have the
property analogous to that of they groups.

Indeed, the terms in the first square brackets have a structure similar to that of the
R-matrix for theGL,, (N) groups. So, literally repeating the proof farZ,, (N), we
find that they are transformed properly when the elemenig move through them (cf (15)
and (16)). The terms in the second square brackets are not changed because of Kronecker
symbolss/, 87" or 8(N+kl)/2, Si(N+1)/2 and relations (18) and (19). They do not contain
twist parameterg;; and are the same for any twist@&dmatrices.

Thus again the matrice defined by (9) and (10) satisfy the CRs (17) for twisted
guantum groups.

The interpretation of twists as transitions to othgcoordinate frames is extended
to differential calculi ong-spaces. Indeed, using the CRs which defing-deformed
differential calculus in the multiparametric case [15], one can straightforwardly check that
the relations

di = o dy’ (20)
O = gid; (21)

convert differential calculus on @-space to the one on a twistedspace. For example,
GL,,, (N) invariant relations for coordinates and derivatives read

& =1+rE0+ (-1 Y ¥,

3
a=i+1
5 o~k " ooky .
Bix = 8,‘ i<k
Gik
Skii = éikfiék i <k.

The first set of relations is not changed under the transformations (20) and (21) due to (6),
and this corresponds to the fact that these relations do not contain twist paramgeters
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Substituting (20) and (21) into the two other sets of relations one has

ko k ko Tk k ir k k' ok
g€ 0ix" = e gi——x0; =gie ——x 0 =gie —x 0
qik qik qik

e’ x’ = € grqux d = gre' firlGux" = gre' qux' o i<k
so thatd; andx* satisfy the twisted CRs

3,'Xk = kaai akxi = qikxiak i <k.

dik

The relations for differentials can be checked quite analogously.

3. g-spaces with commuting coordinates and multidimensional Jackson differential
calculus

It is well known that in the one-dimensional cagaleformed differential calculus can be
realized with the help of a finite difference operation called the Jackson derivative [9, 10],
which has the form

[ = frx)
D, f(x) = W (22)
or
BN e Bl A5
D, f(x) = W (23)
with the CRs

D,x —rxD, =1 D,x—r %D, =1

(throughout this paper we will assume that< 1). In particular, these derivatives

are suitable for the description of a quantum mechanical particle on a one-dimensional
lattice [11]. To consider guantum mechanics on higher-dimensional lattices one needs a
multidimensional generalization of the Jackson calculus. Such a calculus, invariant with
respect to the-groupGL,(N) := GL,1(N), can be constructed in the spacf[x'] with
commuting coordinates’.

As is shown in the previous section, commuting coordinates differ from non-commuting
ones by non-commuting factoes. The situation reminds one of a transition from the usual
three-dimensional Euclidean coordinates to well known quaternions with the {basis:
sometimes it is convenient to include the correspondence with the coordjrdfés non-
commutative quaterniong := x’o; (no summation). Although this transformation brings
new algebraic structure and permits one to express three-dimensional rotations in a pure
algebraic way, the underlying geometrical and physical structure remains the same.

This analogy leads to the conclusion that one can choose a most convenient quantum
space among a set of twistgespaces. In particular, in the case of sparcéfgj [x7], the most
simple choice is the spac&y’[x'] with commuting coordinates. The CRs for coordinates
and derivatives on this space are the following [15]:

N
xix) = xJxt Vi, j aixizl—i—rxiai—i-(r—l) leal
I=i+1

1 o
0 = — 00y 9ix* = rx*o; axt = x'o; i<k, i k=1,..., N. (24)
r
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To develop Jackson calculus define the operators of finite dilatations

N
Ai=1+0-D) x/ (25)
j=i
with the commutation relations
A A = ALA; Vk,i
Arx’ = x' Ay k>i (26)
A;xF = rx*A; k>1.

Note that the operatorg; are analogous to the operatdf'sj of vector fields on a simple
guantum group, introduced in [19]. Relations (25) permit one to expresg-tezivatives
in terms of A;

9 =0A-r"rH A1 — A) i=1...,N, Ayi1:=1 (27)

Relations (26) and (27) lead to the following realization of ¢hderivatives in a space of
functions of N commuting variables:

b Ft . V) = Foet o x rx ey — f(lxl, coxt rxd ...,rxN)' (28)
A —r)xt
One can easily check that the finite differences (28) indeed satisf@ih€N) invariant
CRs (24). These differences look like a natural multidimensional generalization of the
Jackson derivative (22).
As is shown in [8], there are two types of CRs fpderivatives and coordinates, which
are invariant with respect tg-deformed groups. The first possibility is presented in (24),

the second one is the following:

. 1 .. 1 =t

dixl =1+ “x'd; + ( - 1) > ox
r r =1

aa 1aa « « ~ 1.
00k = = 0k 0; dixk = x*g; xt = Zx'og i<k, i,k=1,...,N. (29)
r r

These relations can also be obtained from the general multiparametric ones by the transition
(4) and (21) to newy-coordinates and derivatives. In this case it is natural to introduce the
operators

. 1 LA
A =1+ ( - 1) pe) (30)
r "
j=1
which commute with each other and have the following CRs with the coordinates
Akxi = rilx’ﬁk k>1i
A,-xk = )CkA\,‘ k 2 i. (31)

These relations permit one to construct the realization ofgtiferivativesd; in terms of
the finite differences

& fxt . xY)
= [f(r_lxl, cor W X ) — f(r_lxl, o et rx)]
x[(r~t = Dx]?t (32)

which is the generalization of the Jackson derivative of the second type (23).

As follows from (25), (30) and (6), thed-operators are invariant with respect to
transformations (4) and (21) and, hence, #ieperators have the same form and properties
in all g-coordinate frames related by twists.
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4. A quantum particle in two-dimensional quantum space

In this section we apply the above-considered formulae to construction of quantum
mechanics on a two-dimensional quantum plane. For convenience we rewrite the CRs
(24), (26), (29) and (31) in this particular case denotiftg= z, x> =2, 9, =9, 9 =

3, 01=0, 0p=9, A=A, Ap=A, Ay=A, Ay = A,

_ 1-_ AR 124
22=12z2 30 = -9 30 = ~9d (33)
r r
3z =1+4rzd+ @ —1)zd 07 = 1+rzd 9z =rzd dz = 29 (34)
Az =rzA A7 =71ZA Az =zA A7 =rZA (35)
A 1. 2_ 1 2 PN N 1 =2
dz =1+ -z0 0z=14+-—-1)z0+-270 9z =720 0z = —-z0 (36)
r r r r
A 1 . A A ~ 1 =~ A _a
Az = —zA Az=7ZA Az = —zZA Az = -ZA. (37)
r r r
All A-operators commute with each other and satisfy the relations
AA=1 AA=A  AA=aA (38)

The simplest way to find them is to derive them from an action of the operators on an
arbitrary functionf (z, 7). The CRs between different types gfderivatives have the form

59=r3d  99=r30  93=123) 89 =r23a. (39)
Now we must define-involution in the algebra of the operators which enter the relations
(33)-(39).
We want to consider the parameteras a lattice spacing, hence, it must be a real
number. The appropriate involution fafL,(2) in this case is the following [18]:

. (0 1
T*=CTC c_<1 0).

This means that

«_f[(a* b\ _(d c
T_<c* d*)_<b a)

andz* = z. It is not difficult to see that the CRs for th&-operators and the coordinates
are consistent with the involution

AT= A A=A (40)
This gives the involution rules for the derivatives:

a*=_5+<1_1)§9+? L

r Z Z b4

These rules look rather cumbersome, but they are a direct generalization of the involution
in the one-dimensional case [11].

The next step is to construct the representation of the operators in a Hilbert space so
that the involution would coincide with Hermitian conjugation. To construct a convenient
basis of a Hilbert space one needs Hermitian operators. Combinations of the coordinates of
the form

x=(z+2)/2 y=(z—172)/2i
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are not convenient as they have identical CRs with some ofAttoperators and rather
cumbersome CRs with otherd.-operators play the role of conjugate momenta on a lattice
(cf [11]). A natural choice of position operators follows from the observation thatdthe
operators generate finite dilatations rather than translations. This implies the introduction
of the operators

p=~7z P =p (41)
and

d =7zt PP = 1. (42)
As follows from (40) and (38), we also have the operatérand B := AA such that

A*A =1 B* = B. (43)
The operators have the following CRs:
Ap =rpA B® =r®B AD = DA Bp = pB. (44)

All other operators can be expressed in terms of these four relations.

The CRs (44) play the role of canonical commutation relations gfanalogue of
two-dimensional Heisenberg algebra). As is seen from (44) we have two mutually
commuting subalgebras generated by the pairs of the operétorand B, ® (the analogue
of canonically conjugate momenta and coordinates). Their matrix representations are
constructed on a common domain,, ,, consisting of all linear combinations of vectors
IN, m)ﬂo,bo:

PIN, m) g by = por NN, M) po.bo B|N,m) ., = bor ™" |N, m) g, (45)
A|Nam>po,bo = |N+17m>po,bo ©|N’m>po,bo = |Nam_1>p0,bo~ (46)

The constantgg andbg mark different representations and, from the eigenvalugs arfd

B, it follows that in the rangesoh, rpo) and o, rbg) the representations are inequivalent.
The matricesp, B are Hermitian andd, & are unitary with respect to the scalar product
defined by

p[),bo (Ns m|N/7 m/>p0,b0 = 8NN’8mm’-

As usual,D,, ,, can be completed to a Hilbert spakg, s,

Hpo.h0={ Y CumlNm)pose s Y |cNm|2<oo}.

N,meZ N,meZ

The operatorg and B are essentially self-adjoint in the Hilbert space; their self-adjoint
extension is defined on the domain

D, = { D CumIN.m)pne Y (Cumlr 2 <00, > [Cyml?r ™" < oo}.
N,meZ N.,meZ N.,meZ

The operatorst, ¢ can be easily extended to unitary operators with the dorh@jn,, (see
e.g. [4]; notice that the algebra considered in this work contains the subalgebra generated
by the operators denoted there pyandu which is isomorphic to the algebra af, p or
B, ® and has the same involution properties). Therefore in what follows we will denote
the involution by a sign of Hermitian conjugation.

We will consider one of the representations labelleddgyby and for shortness put
po = bp = 1 (one can always achieve these values by appropriate rescaling of the operators
p — pop and B — boB, the defining CRs (44) being invariant with respect to this
transformation).
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So, starting from thé& L, (2) invariant differential calculus on a quantum plane, we have
come naturally to polar coordinates, the operatdreing the operator of radial coordinates
and the operato® being of the form® = e, where¢ is an (Hermitian) operator of an
angle coordinate. The structure of the algebra involution leads to the mixed representation
with one coordinate ) and one momentum diagonal operator. In the classical case a
multiplication of a function by® shifts its Fourier component numbers by minus unity.
This corresponds to the action (46) of the operaboon vectors ofH. This implies thatB
is connected with an angular momentum operator. In fact it is the analogue of the operator
of the form

. 0
eXp{lfﬁow} = exp{¢oM} (47)

in the case of quantum mechanics on the usual continuous plane, whesesome fixed
angle andd/d¢ is the (two-dimensional) angular momentum operator. Eigenfunctions of
this operator are periodic functions €ipp} with eigenvalues eXppo} = (€?0)". The latter
expression coincides with the eigenvalue of oper&adf one equates = exp{¢o}.
Thus the operatgs defines values of the radial coordinate and Aheperator shifts them
(it plays the role of conjugate momentum). Analogously, the operAtalefines angular
momentum values and the operatbrof the conjugate coordinate shifts its eigenvalues.
Now we can consider a-subgroupA of the GL,(2, R) of matrices of the form

a O
(5 o)

with aa* = a*a. Because of the latter relation it looks like an ordinary group isomorphic
to a multiplicative group of complex numbers, but one must remember about the CRs
with the generatoré”’i of the corresponding quantum universal enveloping algebra. For
left-invariant and right-covariant generators they have the following general form [19],

YLTY = Thy" (Rop)™,,, (R12)™, (48)

where R1, and Ry, are properly normalizedk-matrices of theGL, (2, R). The CRs (48)
give for the subgroup\ (i.e. if b = ¢ = 0)

Yia =ray? Yia* =a*v?} Y%a =aY? Y%a* =ra*Y?,. (49)

It is easy to see that the CRs for := YY%, D = Y%, a anda* are the same as for
A, A, z, 7. So the algebra (35) on the quantum plane is isomorphic to that gf-thégroup

A and we can identify the-plane with this subgroup. The operatotsand A correspond
to right-invariant and left-covariant generators (cf [19]). On the other hand;-thégroup
A can play the role of symmetry group, the whald., (2, R) group being the group of
linear canonical transformations (of CRs (34) and (36)).

The coaction ofA on the coordinates is

z—>7=a®z z—>7=d"®zZ

p—p =a,®p P> P =0 P (50)

a, =~a*a agp = /aja*.
The coordinateg’ and @’ have a representation in a Hilbert spdgex H (cross product
of the same Hilbert space, as in our case the comodule coincides with the symmetry
group) which has a subspace (diagonal) isomorphig{to The latter corresponds to the

representation of the CRs based on the coordinateand &’ as primary ones. AllA-
operators, and therefore the operaBrare invariant with respect to the coaction (50).



Geometry of quantum group twists 2747

To consider a two-dimensional quantum free particle one can use, for example, the
Hamiltonian

Q
h= " [1-A@1—-AN+ @1 - B)? 51
(1_r)2[( )( )+ (1= B)] (51)
where ©Q is constant with dimension of energy. In order to find eigenfunctions and
eigenvalues of the Hamiltonian introduce the operators

o' =expliPInp}

and the states (cf [20])

Lm)= )" IN.m)

m=—0oQ

|P,m) = p'” |1, m)
with the properties

AL, m) = |1, m)

AlP,m) =r'"|P,m)
where P is a real number: & P < 7/x, x := Inr. For eigenvalues of the Hamiltonian
(51) we obtain
h|P» m> = EP,m|Pv m)

(1—cosxP) 11—

Epm = Q2 a2 .

A-r) 1-r
Thus the operatok has the correct continuous limit but its eigenvalues are not invariant
with respect to the reflectiom — —m. This means that the left and right modes have
different properties and positive modes have a decreasing spectrum which can lead to
additional divergencies in the corresponding field theories. These properties are caused

by the exponent-like form of the operatBranalogous to (47) as we discussed above. It is
therefore natural to consider the Hamiltonian

+[m;r]2) —EQ(PZ—i—mZ) [m;r] =

Q
_ _ oAt 2
H= (1_r)2[(1 A1 — AY +1In? B]

with the eigenvalue§2ip ,,,, where

N (1 —cosy P)
o < (1—r)?

As we noted at the end of the section &;operators have the same properties in
all coordinate frames related by twists. So properties, in particular the spectrum, of the
Hamiltonian H, constructed by these operators, do not depend on the specific choice of the
coordinates.

To construct two-dimensional quantum field theory we need a kind of integral over the
variable p. A one-dimensiona-integral has been constructed in [11, 20] and we can use
these results to define

K
/O Ao £(p) = (K, m|o; £ ()], m)
= @A —r)}(K,ml(1—A) " of(p)|1, m)

2
X 2 2 2

K
==Y rlfe™ (53)

I=—00
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where the derivativé, is defined as in (27):

0, = !

T @=np

The last expression for the integral in (53) has the form of a usual Jackson integral [10].
To construct the action, note that the two-dimensional space with the coordinates

z and the symmetry transformations (50) can be considered as a result of the conformal

map

1- A).

of a cylinder with coordinateg andu. This map is well known and is used widely, in
particular, in conformal and string theories (in the frame of so-called radial quantization,
see e.g. [12]). A coordinate along the cylinder is associated with a time coordinate and a
space coordinate takes values on a circle. After the conformal mapping the coordinate
plays the role of time and that of space coordinate. It is easy to see that in coordinates
andu the transformations (50) become translations and the time coordinatdReu takes
values on an equidistant lattice with a spacing.Irin the continuous case, a field theory
free action for a scalar field’ in polar coordinates on theplane has the form

00 271dp )
So = /0 fo L4 ¥ (0. 900,08, + )V (0. 9

o0 o0 d,O )
-y f Sy () (03,08, — MD)W, () (55)
m=—oo/0 P
where W, (p) are Fourier components of the field(p, ¢). This expression is explicitly
invariant with respect to dilatations @f and translations op (the continuous analogue of

(50)).
A quantum plane analogue has the following form:
ro__ i -1 -1
Sp = Ig@wm;wm, m|(L—A) "W, (0)G W, (0)|1, m).

Here the operato6 ! has a form similar to the HamiltoniaH

gi="1

Q
though its meaning is quite different, of course. The finite difference ope@tdrin this
action has the eigenvalues ,, presented in (52). In the case of interactir§ theory, a

one-loop correction to, for example, the mass term is proportional to a trace of the operator

G,
00 —n/Inr dp
Y

M=——00 )"P,m

which has no divergencies. Note, however, that the summation over orbital numiser
the same as in the continuous case.

5. Conclusion

The main result of this work is the statement that twists of quantum groups and
correspondingg-spaces can be realized with the help of the auxiliary non-commuting
elementse’, g, satisfying relations (5) and (6). Geometrically this can be interpreted as
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a transition to another coordinate frame ow-@pace and so for many problems twisted
guantum groups must be physically equivalent. Let us mention again the analogy between
the algebra ofe’, g, and well known quaternions;: one can use either usual three-
dimensional coordinates’ or non-commutative quaterniond := x'o; (N0 summation).

The physical content of a problem is not changed. Unfortunately, many important quantum
groups, for example orthogonal ones, do not have twisted counterparts with commuting
coordinates of a corresponding quantum space, but even in these cases the freedom can
be used for the choice of a most convenigatoordinate frame. Note also that linear
groups play an important role as groups of spacetime symmetries. It is enough to mention
SL(2, C) as a universal covering of the Lorentz group &f1d(2, 2) as a covering of the
four-dimensional conformal group.

Using ¢-deformed space with commuting coordinates we have constructed a
multidimensionalg-group invariant generalization of the famous Jackson derivatives.

As another application of-spaces with commuting coordinates we have considered
guantum mechanics and simple field theory on a two-dimensional quantum space. The
structure of the involution leads to the mixed coordinate—angular momentum representation
of states of the system. This, in turn, results in discretization of only one (radial)
coordinate of the space in spite of thedeformed differential calculus, the spectrum of
the angular momentum operator being unbounded as in the usual continuous case. Such
partial discretization of a spacetime is enough for the regularization of two-dimensional
models but in higher dimensions such field theory can by ultraviolet divergent even in a
g-spacetime. Another lesson learned from the considered models ig-ttexivatives or
finite differences, constructed with the help of operators of the form (25), are connected
with dilatations and not with translations. This implies that the corresponding coordinates
are related with the usual ones (in which derivatives generate translations) by a nonlinear
exponent-like map of the type (54). Itis clear that symmetry transformations, for example of
the Lorentz group, have quite a different form in nonlinearly transformed coordinate frames.
This remark might be important for numerous attempts to construct quantum deformations
of relativistic symmetry.
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