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Abstract. We show thatR-matrices of all simple quantum groups have properties which permit
one to present quantum group twists as transitions to other coordinate frames on quantum
spaces. This implies physical equivalence of field theories invariant with respect toq-groups
(considered asq-deformed spacetime groups of transformations) connected with each other
by twists. Taking into account this freedom, we study quantum spaces of the special type,
with commuting coordinates but withq-deformed differential calculus, and constructGLr(N)

invariant multidimensional Jackson derivatives. We consider a particle and field theory on a two-
dimensionalq-space of this kind and come to the conclusion that only one (timelike) coordinate
is proved to be discretized.

1. Introduction

Lattice regularization has many advantages and plays an important role in quantum field
theory (see e.g. [1]). Unfortunately, it also has some shortcomings. Perhaps the most
essential one is spacetime symmetry breaking. The general reason for the latter is connected
with the introduction of a lattice in the theoryby handsand therefore with its too rigid
nature. Among other reasons, this fact has initiated many attempts to construct discrete
(‘quantized’) spacetime manifolds on a deeper background (for previous attempts see e.g.
[2], ch VII and references therein). In recent years this problem has made a revival and
received considerable interest [3–5] due to the appearance of quantum groups (see e.g. [6]
and references therein).

Quantum spaces which appear in the frame of quantum group theory [7] have many
unusual properties, in particular,q-deformed differential calculi [8] and, in general, non-
commuting coordinates. In one-dimensional space, aq-derivative can be represented by
a Jackson difference operator [9, 10]. This, in turn, provides a description of a quantum
mechanical particle on a one-dimensional lattice [11]. Thus aq-deformation of differential
calculus apparently leads to space discretization. The relation of the non-commutativity
of coordinates to space discretization is not so straightforward and causes problems in the
construction of field theories onq-spaces. Indeed, it means that operators of coordinates
cannot be diagonalized simultaneously and do not have common eigenvalues. On the other
hand, asymptotic (free) states of a particle scattering process are well described by the
usual non-deformed Minkowski geometry and Poincaré group representations. Usually,
it is assumed that theq-group nature of the spacetime reveals itself at extremely small
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distances and high energies. Therefore there exists a problem in this approach of how to
connect the the low-energy description of particles based on a commutative geometry and
the description of particles at high energy (small distances), feeling theq-deformation of
the spacetime.

To clarify this point, recall how the analogous situation looks in the superstring theory
[12]. Low-energy particles correspond to string zero modes. If one considers their scattering,
specific for string theory, heavy modes come into play as intermediate states only, essentially
improving the ultraviolet behaviour of the amplitudes but giving a negligible contribution to
their finite parts. Therefore the existence of superstrings does not contradict the low-energy
phenomenology based on ordinary quantum field theory.

A natural preliminary step towards understanding the relation between low-energy
phenomenology and physics in aq-deformed spacetime can be the reduction of a number
of non-commuting coordinates, retainingq-deformed differential calculus andq-symmetry.
This work is devoted to the study of such a possibility.

As is well known, quantum spaces, related to each other by twists [13, 14] of
correspondingq-groups, have different commutation relations for different coordinates [15].
The key idea of our approach is to present a group twist as a kind ofq-deformed transition
to other frames. As was shown in [16], aq-deformed Minkowski spacetime with non-
commuting coordinates, which corresponds to a pure twisted Poincaré group (i.e. to theq-
group obtained from the classical one by a twist), can be constructed from a usual Minkowski
space with the help of an appropriate coordinate transformation andq-generalization of 4-
beins.

In the present paper we generalize this partial result to the twists of all non-trivially
deformed simple groups. More precisely, we will show that knownR-matrices for all
simple q-groups have a property which permits one to describe the twist procedure as a
transformation ofq-space coordinates.

It seems natural to require that any reasonable theory must be physically equivalent in
different coordinate frames, so one can choose the most suitable frame, in particular the one
with the most simple commutation relations.

To construct lattice-like regularization one definitely needs multidimensional finite
differential calculus. Using the above-mentioned freedom in the choice of differentq-spaces
we considerGLq(N)-invariant q-spaces with commuting coordinates andq-deformed
differential calculus, and construct a multidimensional analogue of the Jackson calculus
(invariant with respect to the appropriate quantum group).

Using the explicit formulae for a two-dimensional space, we consider a quantum
mechanical particle and the simplest field theory, and show that the latter is equivalent to a
system on a cylinder with a time coordinate taking values on an equidistant lattice along a
cylinder. Surprisingly, the second coordinate (a spacelike coordinate on a circle) proved to
be continuous. This fact has its origin in the properties of involution of the corresponding
quantum general linear group which lead to construction of quantum mechanical states in a
mixed coordinate–momentum representation, so that ‘the second discreteness’ corresponds
to integer numbers which label Fourier modes on the circles.

2. Geometry of quantum group twists

As is shown in [13, 14], multiparametric quantum groups can be obtained from a one-
parametricq-group via so-called twists of a quasi-triangular Hopf algebraA with the help
of an elementF = ∑

f i ⊗ fi ∈ A ⊗ A, which satisfies certain relations, so that the new
coproduct1(F) and the new universalR-matrix R(F ) are connected with the initial objects
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1 andR through the relations

1(F) = F1F−1 R(F ) = F−1RF−1.

Consider at first the case of theq-deformations ofGL(N) groups. In this case a twist
of theR-matrix in the fundamental representationR is described with the help of a diagonal
matrix F = diag(f11, f12, . . . , fnn) with fijfji = 1 so that theR-matrix R(F) of the twisted
groupGLr,q̃ij

(N) has the form

R(F) = F−1RF−1.

HereR is (in general, also multiparametric) anR-matrix of the initial groupGLr,qij
(N) and

q̃ij = qijf
2
ij . (1)

Coordinates of the initial quantum spaceCN
q [xi ] satisfy the commutation relations (CRs)

[7, 15, 17]

xixj = qij x
jxi (2)

and coordinates of the twisted spaceC(F)N
q [x̃i ] have the CRs

x̃i x̃j = q̃ij x̃
j x̃i . (3)

Now we introduce the algebraEN
q [ei, gj ] with the generators{ei, gi}Ni=1 which commute

with the coordinates and put

x̃i = eixi (no summation). (4)

The elementsei play the role of components of aq-deformed (diagonal)N -bein. The CRs
for them follows from (1)–(4),

eiej = f 2
ij e

j ei (5)

andgi are inverse elements

gie
i = 1. (6)

The coordinates̃xi are transformed by aq-matrix T̃ :

x̃ ′ i =
N∑

j=1

T̃ i
j x̃

j . (7)

Then using (4) and (6) one obtains from (7) transformations of the coordinatesxi :

x ′ i =
N∑

j=1

gi ⊗ T̃ i
j ⊗ ej ⊗ xj . (8)

We have used in (8) a cross product sign to stress that the elements from the different
sets commute with each other (the elementsgi in (8) must be considered as the inverse
elements to the generatorsei of another copy of an algebraEN

q with respect to the elements
ei entering the same formula). Relation (8) means that the coordinatesxi are transformed
by the matrixT with the entries

T i
j = gi ⊗ T̃ i

j ⊗ ej (no summation). (9)

Using (6) one can express the matrixT̃ throughT :

T̃ i
j = ei ⊗ T i

j ⊗ gj (no summation). (10)
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One can check straightforwardly thatx ′i defined by (8) satisfy the correct CRs

x ′ix ′j = qij x
′j x ′i .

The general reason for this is the following property ofR-matrices: if aq-matrix T

satisfies a TT-relation defined by the correspondingR-matrix, then theT̃ -matrix defined by
(9) or (10) satisfies the relation with twistedR-matrix R(F).

To prove this statement let us write the TT-relation (CRs for entries of a matrixT ) in
explicit form, ∑

p,s

Rmn
psT

p
uT

s
v =

∑
s,r

T n
sT

m
r R

rs
uv

and substituteT i
j by their expressions (9) in terms of̃T i

j . This gives the relation for the
latter: ∑

p,s

Rmn
psgpgse

uevT̃ p
uT̃

s
v =

∑
s,r

T̃ n
s T̃

m
r gngmeserRrs

uv. (11)

Note that in this relation the elementsgi must be considered as inverse elements of the
generatorsei of another copy of an algebraEN

q and so they commute with the elementsei

entering the same relation.
The multiparametricR-matrix for GLr,qij

(N) group has the form

Rmn
ps = Bmn

ps + Nmn
ps (12)

whereB is the diagonal matrix

Bmn
ps = δm

pδn
s

(
δmn + 2nmq−1

mn + 2mnqnmr−1
)

(13)

with 2mn = 1 if m > n, 2mn = 0 if m 6 n, and the matrixN is the off-diagonal part of
the R-matrix,

Nmn
ps = δm

sδ
n
p2mn(1 − r−1). (14)

Using this expressions one easily obtains

Bmn
psgpgs = gmgnB

mn
ps = f −2

mn gngmBmn
ps = gngmB(F)mn

ps (15)

Nmn
psgpgs = gngmNmn

ps (16)

so that

Rmn
psgpgse

uev = gngmeuevR(F)mn
ps

whereR(F) andB(F) are the twisted matrices of the same form (12)–(14) but for the twisted
parameters̃qij = qijf

2
ij . Analogous consideration of the right-hand side of (11) shows that

this relation can be rewritten in the form∑
p,s

R(F)mn
ps T̃

p
uT̃

s
v =

∑
s,r

T̃ n
s T̃

m
r R

(F)rs
uv. (17)

Thus, twistedq-matrices can be constructed with the help ofq-deformedN -beins (5),
(6) and formula (9), which is a direct generalization (q-deformation) of a relation between
matrices of transformations in different coordinate frames.

In the case of theq-deformation of simple groups of the seriesBN , CN andDN there
is one more structure, namely an invariant length [7]

Lq =
∑
i,j

xiCij x
j =

∑
i

lix
i ′xi
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wherei ′ = N + 1− i. Values of the coefficientsli can be found in [7] and are not essential
for our consideration. To preserveLq , components of aq-bein must satisfy the additional
constraints

eiei ′ = ei ′ei = 1 (18)

i = 1, . . . , N/2 for the CN and DN series;i = 1, . . . , (N + 1)/2 for the BN series. In
particular, for the seriesBN

e(N+1)/2 = 1. (19)

These constraints reduce the number of twist parameters, which, from a geometrical point
of view, define CRs for the components of theq-beins, so that the number is equal to
k(k − 1)/2, wherek is rank of a group.R-matrices for theBN , CN andDN series have the
form

R
ij

kl = [δi
kδ

j

l(rδ
ij (1 − δii ′) + (2jirq−1

ij + 2ijqjir
−1)(1 − δii ′)) + (r − r−1)δi

lδ
j

k2
ij ]

+
[

1

r
δi

kδ
j

lδ
ji ′(1 − δii ′) − 2ij (r − r−1)r(ρi−ρj )εiεj δ

ij ′
δkl′

+δi
(N+1)/2δ

j

(N+1)/2δ
(N+1)/2

k δ
(N+1)/2

l

]
(the last term exists for theBN series only). Hereρi and εi are integer or half-integer
numbers [7, 18]. Using this explicit form one can easily show that theR-matrices have the
property analogous to that of theAN groups.

Indeed, the terms in the first square brackets have a structure similar to that of the
R-matrix for theGLr,qij

(N) groups. So, literally repeating the proof forGLr,qij
(N), we

find that they are transformed properly when the elementsei, gj move through them (cf (15)
and (16)). The terms in the second square brackets are not changed because of Kronecker
symbolsδji ′ , δij ′

or δ
(N+1)/2

k , δi
(N+1)/2 and relations (18) and (19). They do not contain

twist parametersqij and are the same for any twistedR-matrices.
Thus again the matrices̃T defined by (9) and (10) satisfy the CRs (17) for twisted

quantum groups.
The interpretation of twists as transitions to otherq-coordinate frames is extended

to differential calculi onq-spaces. Indeed, using the CRs which define aq-deformed
differential calculus in the multiparametric case [15], one can straightforwardly check that
the relations

dx̃i = ei dxi (20)

∂̃i = gi∂i (21)

convert differential calculus on aq-space to the one on a twistedq-space. For example,
GLr,qij

(N) invariant relations for coordinates and derivatives read

∂̃i x̃
i = 1 + rx̃i ∂̃ + (r − 1)

n∑
a=i+1

x̃a ∂̃a

∂̃i x̃
k = r

q̃ik

x̃k∂̃i i < k

∂̃kx̃
i = q̃ikx̃

i ∂̃k i < k.

The first set of relations is not changed under the transformations (20) and (21) due to (6),
and this corresponds to the fact that these relations do not contain twist parametersqij .
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Substituting (20) and (21) into the two other sets of relations one has

gie
k∂ix

k = ekgi

r

q̃ik

xk∂i = gie
k f 2

ikr

q̃ik

xk∂i = gie
k r

qik

xk∂i

gke
i∂kx

i = eigkq̃ikx
i∂k = gke

if −2
ik q̃ikx

i∂k = gke
iqikx

i∂k i < k

so that∂i andxk satisfy the twisted CRs

∂ix
k = r

qik

xk∂i ∂kx
i = qikx

i∂k i < k.

The relations for differentials can be checked quite analogously.

3. q-spaces with commuting coordinates and multidimensional Jackson differential
calculus

It is well known that in the one-dimensional caseq-deformed differential calculus can be
realized with the help of a finite difference operation called the Jackson derivative [9, 10],
which has the form

Drf (x) = f (x) − f (rx)

(1 − r)x
(22)

or

D̃rf (x) = f (r−1x) − f (x)

(r−1 − 1)x
(23)

with the CRs

Drx − rxDr = 1 D̃rx − r−1xD̃r = 1

(throughout this paper we will assume thatr 6 1). In particular, these derivatives
are suitable for the description of a quantum mechanical particle on a one-dimensional
lattice [11]. To consider quantum mechanics on higher-dimensional lattices one needs a
multidimensional generalization of the Jackson calculus. Such a calculus, invariant with
respect to theq-groupGLr(N) := GLr,1(N), can be constructed in the spaceCN

r [xi ] with
commuting coordinatesxi .

As is shown in the previous section, commuting coordinates differ from non-commuting
ones by non-commuting factorsei . The situation reminds one of a transition from the usual
three-dimensional Euclidean coordinates to well known quaternions with the basis{σi}3

i=1:
sometimes it is convenient to include the correspondence with the coordinates{xi}3

i=1 non-
commutative quaternionŝxi := xiσi (no summation). Although this transformation brings
new algebraic structure and permits one to express three-dimensional rotations in a pure
algebraic way, the underlying geometrical and physical structure remains the same.

This analogy leads to the conclusion that one can choose a most convenient quantum
space among a set of twistedq-spaces. In particular, in the case of spacesCN

r,qij
[xi ], the most

simple choice is the spacesCN
r [xi ] with commuting coordinates. The CRs for coordinates

and derivatives on this space are the following [15]:

xixj = xjxi ∀ i, j ∂ix
i = 1 + rxi∂i + (r − 1)

N∑
l=i+1

xl∂l

∂i∂k = 1

r
∂k∂i ∂ix

k = rxk∂i ∂kx
i = xi∂k i < k, i, k = 1, . . . , N. (24)
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To develop Jackson calculus define the operators of finite dilatations

Ai = 1 + (r − 1)

N∑
j=i

xj ∂j (25)

with the commutation relations

AiAk = AkAi ∀ k, i

Akx
i = xiAk k > i (26)

Aix
k = rxkAi k > i.

Note that the operatorsAi are analogous to the operatorsY i
j of vector fields on a simple

quantum group, introduced in [19]. Relations (25) permit one to express theq-derivatives
in terms ofAi

∂i = (1 − r)−1(xi)−1(Ai+1 − Ai) i = 1, . . . , N, AN+1 := 1. (27)

Relations (26) and (27) lead to the following realization of theq-derivatives in a space of
functions ofN commuting variables:

∂if (x1, . . . , xN) = f (x1, . . . , xi, rxi+1, . . . , rxN) − f (x1, . . . , xi−1, rxi, . . . , rxN)

(1 − r)xi
. (28)

One can easily check that the finite differences (28) indeed satisfy theGLr(N) invariant
CRs (24). These differences look like a natural multidimensional generalization of the
Jackson derivative (22).

As is shown in [8], there are two types of CRs forq-derivatives and coordinates, which
are invariant with respect toq-deformed groups. The first possibility is presented in (24),
the second one is the following:

∂̂ix
i = 1 + 1

r
xi ∂̂i +

(
1

r
− 1

) i−1∑
l=1

xl∂̂l

∂̂i ∂̂k = 1

r
∂̂k∂̂i ∂̂ix

k = xk∂̂i ∂̂kx
i = 1

r
xi ∂̂k i < k, i, k = 1, . . . , N. (29)

These relations can also be obtained from the general multiparametric ones by the transition
(4) and (21) to newq-coordinates and derivatives. In this case it is natural to introduce the
operators

Âi = 1 +
(

1

r
− 1

) i∑
j=1

xj ∂̂j (30)

which commute with each other and have the following CRs with the coordinates

Âkx
i = r−1xiÂk k > i

Âix
k = xkÂi k > i. (31)

These relations permit one to construct the realization of theq-derivatives∂̂i in terms of
the finite differences

∂̂if (x1, . . . , xN)

= [f (r−1x1, . . . , r−1xi, xi+1, . . . , xN) − f (r−1x1, . . . , r−1xi−1, rxi, . . . , rxN)]

×[(r−1 − 1)xi ]−1 (32)

which is the generalization of the Jackson derivative of the second type (23).
As follows from (25), (30) and (6), theA-operators are invariant with respect to

transformations (4) and (21) and, hence, theA-operators have the same form and properties
in all q-coordinate frames related by twists.
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4. A quantum particle in two-dimensional quantum space

In this section we apply the above-considered formulae to construction of quantum
mechanics on a two-dimensional quantum plane. For convenience we rewrite the CRs
(24), (26), (29) and (31) in this particular case denotingx1 = z, x2 = z̄, ∂1 = ∂, ∂2 =
∂̄, ∂̂1 = ∂̂, ∂̂2 = ˆ̄∂, A1 = A, A2 = Ā, Â1 = Â, A2 = ˆ̄A,

zz̄ = z̄z ∂∂̄ = 1

r
∂̄∂ ∂̂ ˆ̄∂ = 1

r

ˆ̄∂∂̂ (33)

∂z = 1 + rz∂ + (r − 1)z̄∂̄ ∂̄ z̄ = 1 + rz̄∂̄ ∂z̄ = rz̄∂ ∂̄z = z∂̄ (34)

Az = rzA Az̄ = rz̄A Āz = zĀ Āz̄ = rz̄Ā (35)

∂̂z = 1 + 1

r
z∂̂ ˆ̄∂z̄ = 1 +

(
1

r
− 1

)
z∂̂ + 1

r
z̄ ˆ̄∂ ∂̂z̄ = z̄∂̂ ˆ̄∂z = 1

r
z ˆ̄∂ (36)

Âz = 1

r
zÂ Âz̄ = z̄Â ˆ̄Az = 1

r
z ˆ̄A ˆ̄Az̄ = 1

r
z̄ ˆ̄A. (37)

All A-operators commute with each other and satisfy the relations

ˆ̄AA = 1 ˆ̄AĀ = Â ÂA = Ā. (38)

The simplest way to find them is to derive them from an action of the operators on an
arbitrary functionf (z, z̄). The CRs between different types ofq-derivatives have the form

∂̂∂ = r∂∂̂ ˆ̄∂∂̄ = r∂̄ ˆ̄∂ ∂̂∂̄ = ∂̄ ∂̂ ˆ̄∂∂ = r2∂̄ ˆ̄∂. (39)

Now we must define∗-involution in the algebra of the operators which enter the relations
(33)–(39).

We want to consider the parameterr as a lattice spacing, hence, it must be a real
number. The appropriate involution forGLr(2) in this case is the following [18]:

T ∗ = CT C C =
(

0 1
1 0

)
.

This means that

T ∗ =
(

a∗ b∗

c∗ d∗

)
=

(
d c

b a

)
and z∗ = z̄. It is not difficult to see that the CRs for theA-operators and the coordinates
are consistent with the involution

A∗ = ˆ̄A Ā∗ = Â. (40)

This gives the involution rules for the derivatives:

∂∗ = −ˆ̄∂ +
(

1

r
− 1

)
z

z̄
∂̂ + 1

z̄
∂̄∗ = −∂̂ + 1

z
.

These rules look rather cumbersome, but they are a direct generalization of the involution
in the one-dimensional case [11].

The next step is to construct the representation of the operators in a Hilbert space so
that the involution would coincide with Hermitian conjugation. To construct a convenient
basis of a Hilbert space one needs Hermitian operators. Combinations of the coordinates of
the form

x = (z + z̄)/2 y = (z − z̄)/2i
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are not convenient as they have identical CRs with some of theA-operators and rather
cumbersome CRs with others.A-operators play the role of conjugate momenta on a lattice
(cf [11]). A natural choice of position operators follows from the observation that theA-
operators generate finite dilatations rather than translations. This implies the introduction
of the operators

ρ =
√

z̄z ρ∗ = ρ (41)

and

8 =
√

z̄z−1 8∗8 = 1. (42)

As follows from (40) and (38), we also have the operatorsA andB := ÂĀ such that

A∗A = 1 B∗ = B. (43)

The operators have the following CRs:

Aρ = rρA B8 = r8B A8 = 8A Bρ = ρB. (44)

All other operators can be expressed in terms of these four relations.
The CRs (44) play the role of canonical commutation relations (theq-analogue of

two-dimensional Heisenberg algebra). As is seen from (44) we have two mutually
commuting subalgebras generated by the pairs of the operatorsA, ρ andB, 8 (the analogue
of canonically conjugate momenta and coordinates). Their matrix representations are
constructed on a common domainDρ0,b0 consisting of all linear combinations of vectors
|N, m〉ρ0,b0:

ρ|N, m〉ρ0,b0 = ρ0r
−N |N, m〉ρ0,b0 B|N, m〉ρ0,b0 = b0r

−m|N, m〉ρ0,b0 (45)

A|N, m〉ρ0,b0 = |N + 1, m〉ρ0,b0 8|N, m〉ρ0,b0 = |N, m − 1〉ρ0,b0. (46)

The constantsρ0 andb0 mark different representations and, from the eigenvalues ofρ and
B, it follows that in the ranges [ρ0, rρ0) and [b0, rb0) the representations are inequivalent.
The matricesρ, B are Hermitian andA, 8 are unitary with respect to the scalar product
defined by

ρ0,b0〈N, m|N ′, m′〉ρ0,b0 = δNN ′δmm′ .

As usual,Dρ0,b0 can be completed to a Hilbert spaceHρ0,b0

Hρ0,b0 =
{ ∑

N,m∈Z
CNm|N, m〉ρ0,b0 :

∑
N,m∈Z

|CNm|2 < ∞
}
.

The operatorsρ andB are essentially self-adjoint in the Hilbert space; their self-adjoint
extension is defined on the domain

D+
ρ0,b0

=
{ ∑

N,m∈Z
CNm|N, m〉ρ0,b0 :

∑
N,m∈Z

|CNm|2r−2N < ∞,
∑

N,m∈Z
|CNm|2r−2m < ∞

}
.

The operatorsA, φ can be easily extended to unitary operators with the domainHρ0,b0 (see
e.g. [4]; notice that the algebra considered in this work contains the subalgebra generated
by the operators denoted there byp and u which is isomorphic to the algebra ofA, ρ or
B, 8 and has the same involution properties). Therefore in what follows we will denote
the involution by a sign of Hermitian conjugation.

We will consider one of the representations labelled byρ0, b0 and for shortness put
ρ0 = b0 = 1 (one can always achieve these values by appropriate rescaling of the operators
ρ → ρ0ρ and B → b0B, the defining CRs (44) being invariant with respect to this
transformation).
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So, starting from theGLr(2) invariant differential calculus on a quantum plane, we have
come naturally to polar coordinates, the operatorρ being the operator of radial coordinates
and the operator8 being of the form8 = e−iφ , whereφ is an (Hermitian) operator of an
angle coordinate. The structure of the algebra involution leads to the mixed representation
with one coordinate (ρ) and one momentum diagonal operator. In the classical case a
multiplication of a function by8 shifts its Fourier component numbers by minus unity.
This corresponds to the action (46) of the operator8 on vectors ofH. This implies thatB
is connected with an angular momentum operator. In fact it is the analogue of the operator
of the form

exp

{
iφ0

∂

∂φ

}
= exp{φ0M} (47)

in the case of quantum mechanics on the usual continuous plane, whereφ0 is some fixed
angle and i∂/∂φ is the (two-dimensional) angular momentum operator. Eigenfunctions of
this operator are periodic functions exp{inφ} with eigenvalues exp{nφ0} = (eφ0)n. The latter
expression coincides with the eigenvalue of operatorB if one equatesr = exp{φ0}.

Thus the operatorρ defines values of the radial coordinate and theA operator shifts them
(it plays the role of conjugate momentum). Analogously, the operatorB defines angular
momentum values and the operator8 of the conjugate coordinate shifts its eigenvalues.

Now we can consider aq-subgroup3 of the GLr(2, R) of matrices of the form

T =
(

a 0
0 a∗

)
with aa∗ = a∗a. Because of the latter relation it looks like an ordinary group isomorphic
to a multiplicative group of complex numbers, but one must remember about the CRs
with the generatorsY i

j of the corresponding quantum universal enveloping algebra. For
left-invariant and right-covariant generators they have the following general form [19],

Y i
jT

k
s = T k

lY
m
n(R̂21)

il
mt (R̂12)

nt
js (48)

where R̂12 and R̂21 are properly normalizedR-matrices of theGLr(2, R). The CRs (48)
give for the subgroup3 (i.e. if b = c = 0)

Y 1
1a = raY 1

1 Y 1
1a

∗ = a∗Y 1
1 Y 2

2a = aY 2
2 Y 2

2a
∗ = ra∗Y 2

2. (49)

It is easy to see that the CRs forD := Y 1
1Y

2
2, D̄ := Y 2

2, a and a∗ are the same as for
A, Ā, z, z̄. So the algebra (35) on the quantum plane is isomorphic to that of theq-subgroup

3 and we can identify theq-plane with this subgroup. The operatorsÂ and ˆ̄A correspond
to right-invariant and left-covariant generators (cf [19]). On the other hand, theq-subgroup
3 can play the role of symmetry group, the wholeGLr(2, R) group being the group of
linear canonical transformations (of CRs (34) and (36)).

The coaction of3 on the coordinates is

z → z′ = a ⊗ z z̄ → z̄′ = a∗ ⊗ z̄

ρ → ρ ′ = aρ ⊗ ρ 8 → 8′ = a8 ⊗ 8 (50)

aρ = √
a∗a a8 =

√
a/a∗.

The coordinatesρ ′ and8′ have a representation in a Hilbert spaceH ⊗ H (cross product
of the same Hilbert space, as in our case the comodule coincides with the symmetryq-
group) which has a subspace (diagonal) isomorphic toH. The latter corresponds to the
representation of the CRs based on the coordinatesρ ′ and 8′ as primary ones. AllA-
operators, and therefore the operatorB, are invariant with respect to the coaction (50).
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To consider a two-dimensional quantum free particle one can use, for example, the
Hamiltonian

h = �

(1 − r)2
[(1 − A)(1 − A†) + (1 − B)2] (51)

where � is constant with dimension of energy. In order to find eigenfunctions and
eigenvalues of the Hamiltonian introduce the operators

ρ iP = exp{iP ln ρ}
and the states (cf [20])

|1l, m〉 =
∞∑

m=−∞
|N, m〉

|P, m〉 = ρ iP |1l, m〉
with the properties

A|1l, m〉 = |1l, m〉
A|P, m〉 = r iP |P, m〉

whereP is a real number: 06 P 6 π/χ , χ := ln r. For eigenvalues of the Hamiltonian
(51) we obtain

h|P, m〉 = ξP,m|P, m〉
ξP,m = �

(
(1 − cosχP )

(1 − r)2
+ [m; r]2

)
−→
r→1

�(P 2 + m2) [m; r] = 1 − rm

1 − r
.

Thus the operatorh has the correct continuous limit but its eigenvalues are not invariant
with respect to the reflectionm → −m. This means that the left and right modes have
different properties and positive modes have a decreasing spectrum which can lead to
additional divergencies in the corresponding field theories. These properties are caused
by the exponent-like form of the operatorB analogous to (47) as we discussed above. It is
therefore natural to consider the Hamiltonian

H = �

(1 − r)2
[(1 − A)(1 − A†) + ln2 B]

with the eigenvalues�λP,m, where

λP,m =
(

(1 − cosχP )

(1 − r)2
+ χ2

(1 − r)2
m2

)
−→
r→1

(P 2 + m2). (52)

As we noted at the end of the section 3,A-operators have the same properties in
all coordinate frames related by twists. So properties, in particular the spectrum, of the
HamiltonianH , constructed by these operators, do not depend on the specific choice of the
coordinates.

To construct two-dimensional quantum field theory we need a kind of integral over the
variableρ. A one-dimensionalq-integral has been constructed in [11, 20] and we can use
these results to define∫ K

0
drρ f (ρ) := 〈K, m|∂−1

ρ f (ρ)|1l, m〉

= (1 − r)〈K, m|(1 − A)−1ρf (ρ)|1l, m〉

= (1 − r)

K∑
l=−∞

r−lf (r−l) (53)
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where the derivative∂ρ is defined as in (27):

∂ρ := 1

(1 − r)ρ
(1 − A).

The last expression for the integral in (53) has the form of a usual Jackson integral [10].
To construct the action, note that the two-dimensional space with the coordinatesz and

z̄ and the symmetry transformations (50) can be considered as a result of the conformal
map

u → z = eu ū → z̄ = eū (54)

of a cylinder with coordinates̄u and u. This map is well known and is used widely, in
particular, in conformal and string theories (in the frame of so-called radial quantization,
see e.g. [12]). A coordinate along the cylinder is associated with a time coordinate and a
space coordinate takes values on a circle. After the conformal mapping the coordinateρ

plays the role of time and8 that of space coordinate. It is easy to see that in coordinatesu

andū the transformations (50) become translations and the time coordinateτ := Reu takes
values on an equidistant lattice with a spacing lnr. In the continuous case, a field theory
free action for a scalar field9 in polar coordinates on thez-plane has the form

S0 =
∫ ∞

0

∫ 2π

0

dρ

ρ
dφ 9(ρ, φ)(ρ∂ρρ∂ρ + ∂2

8)9(ρ, φ)

=
∞∑

m=−∞

∫ ∞

0

dρ

ρ
9−m(ρ)(ρ∂ρρ∂ρ − m2)9m(ρ) (55)

where9m(ρ) are Fourier components of the field9(ρ, φ). This expression is explicitly
invariant with respect to dilatations ofρ and translations ofφ (the continuous analogue of
(50)).

A quantum plane analogue has the following form:

Sr
0 = lim

K→∞

∞∑
m=−∞

〈K, m|(1 − A)−19−m(ρ)G−19m(ρ)|1l, m〉.

Here the operatorG−1 has a form similar to the HamiltonianH

G−1 = H

�

though its meaning is quite different, of course. The finite difference operatorG−1 in this
action has the eigenvaluesλP,m presented in (52). In the case of interacting94 theory, a
one-loop correction to, for example, the mass term is proportional to a trace of the operator
G,

∞∑
m=−∞

∫ −π/ ln r

0

dP

λP,m

which has no divergencies. Note, however, that the summation over orbital numberm is
the same as in the continuous case.

5. Conclusion

The main result of this work is the statement that twists of quantum groups and
correspondingq-spaces can be realized with the help of the auxiliary non-commuting
elementsei, gk satisfying relations (5) and (6). Geometrically this can be interpreted as
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a transition to another coordinate frame on aq-space and so for many problems twisted
quantum groups must be physically equivalent. Let us mention again the analogy between
the algebra ofei, gk and well known quaternionsσi : one can use either usual three-
dimensional coordinatesxi or non-commutative quaternionŝxi := xiσi (no summation).
The physical content of a problem is not changed. Unfortunately, many important quantum
groups, for example orthogonal ones, do not have twisted counterparts with commuting
coordinates of a corresponding quantum space, but even in these cases the freedom can
be used for the choice of a most convenientq-coordinate frame. Note also that linear
groups play an important role as groups of spacetime symmetries. It is enough to mention
SL(2, C) as a universal covering of the Lorentz group andSU(2, 2) as a covering of the
four-dimensional conformal group.

Using q-deformed space with commuting coordinates we have constructed a
multidimensionalq-group invariant generalization of the famous Jackson derivatives.

As another application ofq-spaces with commuting coordinates we have considered
quantum mechanics and simple field theory on a two-dimensional quantum space. The
structure of the involution leads to the mixed coordinate–angular momentum representation
of states of the system. This, in turn, results in discretization of only one (radial)
coordinate of the space in spite of theq-deformed differential calculus, the spectrum of
the angular momentum operator being unbounded as in the usual continuous case. Such
partial discretization of a spacetime is enough for the regularization of two-dimensional
models but in higher dimensions such field theory can by ultraviolet divergent even in a
q-spacetime. Another lesson learned from the considered models is thatq-derivatives or
finite differences, constructed with the help of operators of the form (25), are connected
with dilatations and not with translations. This implies that the corresponding coordinates
are related with the usual ones (in which derivatives generate translations) by a nonlinear
exponent-like map of the type (54). It is clear that symmetry transformations, for example of
the Lorentz group, have quite a different form in nonlinearly transformed coordinate frames.
This remark might be important for numerous attempts to construct quantum deformations
of relativistic symmetry.
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